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Abstract

The main research activities at the Center for Modeling of Turbulence and Tran-

sition (CMOTT) are described. The research objective of CMOTT is to improve

and/or develop turbulence and transition models for propulsion systems. The flows

of interest in propulsion systems can be both compressible and incompressible,

three dimensional, bounded by complexwalI geometries, chemically reacting, and

involve "bypass" transition. The most reievant turbulence and transition models for

the above flows are one- and two-eqUation eddy viscosity models, Reynolds stress

algebraic- and transport-equation modeis, pdf models, and multiple:scale models.
All these models are classified as one-point closure schemes since only one-point (in

time and space) turbulent correlations, such as second moments_ (Reynolds stresses

and turbulent heat fluxes) and third moments (_, u_02), are involved. In

computational fluid dynamics, all turbulent quantities are one-point correlations.

Therefore, the study of one-point turbulent closure schemes is the focus of our

turbulence research. However, other research, such as the renormalization group

theory, the direct interaction approximation method and numerical simulations are

also pursued to support the development of turbulence modeling.
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1. Introduction

The center for modeling of turbulence and transition was established as a special

focus group within the Institute for Computational Mechanics in Propulsion at

NASA Lewis Research Center in 1990. Its objective is to improve and/or develop

turbulence and transition models for computational fluid dynamics (CFD) applied

in propulsion systems. With the advance of computer technology and algorithms,

accurate turbulence and transition modeling becomes the pacing item for improving

flow calculations used in propulsion system design in all its key elements. The flows

of interest in propulsion systems are, in general, very complex since there are wall-

bounded three-dimensional complex geometries, chemical reactions, compressibility

and transition, etc. In order to accurately predict these flows one must correctly

model the turbulent stresses and scalar fluxes which are one-point (in time and

space) turbulent correlations. For flows with finite rate chemical reactions, accurate

modeling of the production rate of species is crucial for turbulent flow calculations.

Based on the above considerations, turbulence modeling activities at CMOTT are

focused on one-point closure schemes, that is, using the moment closure schemes for

the turbulent velocity field and the joint scalar pdf method for the reacting scalar
field.

There are various moment closure schemes which have been developed for var-

ious engineering applications. However, in practice, one often finds that the ex-

isting models need to be improved and/or re-developed in order to reasonably

simulate complex flow structures appearing in propulsion systems. For this pur-

pose, CMOTT devotes itself to improving and/or re-developing these moment clo-

sure schemes which include eddy viscosity (one- and two-equation) models, second

moment algebraic- and transport-equation models, non-equilibrium multiple-scale

models, and bypass transition models. In addition, other studies supporting the

development of one-point closure schemes have been also carried out (for example,

studies on renormalization group theory (RNG), direct interaction approximation

(DIA), direct numerical simulation (DNS) and large eddy simulation (LES)).

In this report, we first describe the general development of turbulent constitutive

relations, turbulent mechanical and thermal dissipation and a new eddy viscosity

equation. Second, we describe the detailed developments on each moment closure

scheme and the pdf method. Then the RNG and DIA methods and finally, the

numerical simulation of particular turbulence phenomena, such as rotation and

bypass transition, etc., are considered.

Each research subject is the joint project of several CMOTT researchers and

visitors. In describing research activities, the names of involved researchers will be

mentioned for reference.
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2. General Developments

2.1 Turbulent Constitutive Relations

Reynolds stress

Using the invariant theory in continuum mechanics and Generalized Cayley-

Hamilton formulas for tensor products, a turbulent constitutive relation (or a gen-

eral turbulence model) for any turbulent correlations can be obtained, in principle.

Therefore, this theory provides an avenue to develop better turbulence models than

those existing. For example, a commonly used constitutive relation for Reynolds

stresses uiuj (in terms of the mean deformation rate tensor U_,j and the turbulent

velocity and length scales characterized by the turbulent kinetic energy k and its

dissipation rate s) is

The effective eddy viscosity VT defined as

-C,_ for iCj (2.1.2)
_UiU _

ur = Ui,_ + Uj,i

is isotropic since UT is a scalar quantity. However, the invariant theory enables us

to formulate the following general model (Shih and Lumley l, Johansson 2):

2 K 2 2
"uiUj = -_k_ij + 2a2--(Ui,j_ + Uj,i - -_Ui,i ij)

K 3
-t- 2a4 -_- (U2,j -t- U2"'" - 2 Hl Sij )o

K 3 1 H2 _ij)+ 2a6-_-(V_,kVj,k--

K3 1H25_)+ 2a77(vk,iv_,j-

K 4 2 H3 5ij)+ 2as (u,, uj  + -
K 4

+ 2aloTr(u_y_,j + u_,ju_,_ 2-n_5)a (2.1.a)
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where
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= = = U 2 U 2II1 Ui,kUk,i, II_ Ui,kUi,k, n3 U_,kU_,k, 114= i,k i,k,

(2.1.4)

From Eq.(2.1.3), the effective eddy viscosity

-uiuj (2.1.5)(_r)i_ = vi,j + u_,i

is no longer a scalar and, hence, is an anisotropic eddy viscosity. It is noticed that

the first two terms on the right hand side of Eq.(2.1.3) represent the standard k-s

eddy viscosity model (2.1.1) and that the first five terms of Eq.(2.1.3) are of the same

form as the models derived from both the two-scale DIA approach (Yoshizawa 3) and

the RNG method (Rubinstein and Barton4).

Eq.(2.1.3) is a general model for uiuj. It contains 11 undetermined coefficients

which are, in general, scalar functions of various invariants of the tensors in ques-

tion, such as SijSij (strain rate) and _jf_j (rotation rate) which are (H2 + H1)/2

and (II2 - H1)/2 respectively. The detailed forms of these scalar functions must

be determined by other model constraints, for example, realizability, and by exper-

imental data. Eq.(2.1.3) contains 12 terms; however, its quadratic tensorial form

may be sufficient for practical applications. We will see later in section 3.3 that the

constitutive relation (2.1.3) has a significant impact on the development of Reynolds

stress algebraic equation models.

Turbulent scalar flux 0ui

We assume the following functional form:

Oui = F_(gi,j, T,. k, e, 02, eo) (2.1.6)

where 0 2 is the variance of a fluctuating scalar and eo is its dissipation rate.

Eq.(2.1.6) indicates that the scalar flux depends on not only the mean scalar gradi-

ent T,i, but also the mean velocity gradient U_,j and the scales of both velocity and

scalar fluctuations characterized by k, e, 0 2, so.

Applying the invariant theory, we may obtain the following general constitutive
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relation for 8ui:

w

E0 E

+ _'_ Ee

k 4 [k_¢
+ _,_)

k 5 k0 _ U_., Tr2 Tr2 2 2

+ _(-;_) _a_,_j,,_ +a_U_,_Vt,j

+ al,_Ui,_:Vl,kU_j + alsVj,kU,,kV t, )Tj

k_ k + _.v_,_vhv_,_)8_---)l/2(a16Ui,kU_,kU_, j

+ _3Uj,_)T,j

_/_(a4U_,kU_,j+ asUj,kUk,_+ a6U_,kUj,k+ aTUkyj:,j )Tj

2 U1/_(a_u_,,:u],_+ a_u_,_u_,,:+ _oU_,,v,_,j+ _iu_,_ _,j )Tj

k 7 k 0 2 112 2 2

+ -_(-;_)_o a_U,,_U_,_V_,._Vi,mT_
(_._.w)

The coefficients al - a_s are, in general, functions of the time scale ratio k/_

and the other invariants formed by the tensors in question, for example, T,_T,k,

T_U_,jT, j, etc.. Again, Eq.(2.1.7) implies that the effective eddy diffusivity

-/?u_(z_)_-
T_

is not isotropic. It is noticed that the first term on the right hand side of Eq.(2.1.7)

is the standard eddy diffusion model, and the models derived from the two-scale

DIA (Yoshizawa _) and the RNG method (Rubinstein and Barton 6) are similar to

the first two terms of Eq.(2.1.7). In practice, a form containing the first two terms

on the right hand side of Eq.(2.1.7) may suffice. Further development of this model

for turbulent heat transfer is described in Section 3.4.

The Researchers involved with the subject in this section are T.-H. Shih, J. Zhu,

A. Shabbir, J.L. Lumley_and A. Johansson._

2.2 Mechanical and Scalar Dissipation Equation

Mechanical dissipation

In turbulence modeling, we often need turbulent characteristic velocity and length

scales. While the turbulent kinetic energy k is used to characterize the velocity scale,

the mechanical dissipation rate _ and the scalar dissipation rate _0 are used to char-

acterize the length scales for mechanical and scalar fields, respectively. Comparing

with the turbulent kinetic energy equation, the exact dissipation rate equation is

Professor, Cornell University, Ithaca, NY

Professor, Royal Institute of Technology, Stockholm, Sweden
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very complicated. In this equation, all the terms which represent important tur-

bulence physics (for example, turbulent diffusion, generation and destruction) are

unknown and are of complex forms that are all related to small scales of turbulence.

Therefore, in the literature, the exact dissipation equation is not considered as a

useful equation to work with. Instead, one creates a model equation by assuming an

analogy to the turbulent kinetic energy equation, i.e., one assumes that the model

dissipation rate equation also has generation and destruction terms which are as-

sumed to be proportional respectively to the production and dissipation terms in

the turbulent kinetic energy equation over the period of large eddy turn-over time

characterized by k/¢. The resulting model dissipation rate equation is written as

¢,t + =w,ii -
g C2

- C l_u u U a -
E-

(2.2.1)

Recently, Lumley 7 proposed a dissipation rate equation based on the concept of

spectral energy transfer caused by interactions between eddies of different sizes.

This model equation mimics the physics of statistical energy transfer from large

eddies to small eddies and is of a different form than equation (2.2.1).

In this study, we explore another rational way to obtain the model dissipation

rate equation which contains certain important physics and hope it will work better

than the existing one. The idea is that first, there is a relationship between the

dissipation rate ¢ and the mean-square vorticity fluctuation wiw_ at high Reynolds

numbers or in homogefieous turbulence:

g -- VO.)iO.)i

and second, all the terms appearing in the wiwi equation have more clear physical

meanings than that in the ¢ equation so that the w_wi equation is easier to model.

Once the w_w_ equation is modeled, a model dissipation rate equation will be readily

obtained.

The exact equation for w_wi is

( wiuJi U a)i_oi+ j(-5-),j
•wiwi. 1

= "(--5-- )'_ -- 5 (_)'j + _aj

-- uj-_-;_fl_,j + w-_Ui5 + w_wjui,j - uw_,jw_,j

(2.2.2)

where ui and Ui are the fluctuating and mean velocities, and wi and _'/i are the

fluctuating and mean vorticity which are defined by

w_ = eijkUkj fl_ = eijkUk,j (2.2.3)

Tennekes and Lumley s clearly described the physical meaning of each term in equa-

tion (2.2.2). Order of magnitude analysis shows that the first, third, fourth and fifth

terms on the right hand side of Eq.(2.2.2) become small compared with all other
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terms in the equation as the turbulent Reynolds number increases. The sixth and

seventh terms are the production due to fluctuating vortex stretching and the dissi-

pation due to the viscosity of the fluid. As the turbulent Reynolds number increases
these last two terms become dominant and the balance between them determines the

evolution of vorticity fluctuations. Neglecting terms wiui,jf_j, -_fliS, wiwjU_,j

and u(_),jj, the evolution of _ at large Reynolds number will be described by

the following equation,

(2.2.4)

To model wiwSui,j -uwi,Swi,S, let us first estimate wiwSui,s.

anisotropic tensor bi_:

_o wiwj 16
bij- w_ -_ iS

we define an

(2.2.5)

then wiwsui,j can be written as

hw 032 U' "
a)iCdS_i,S "- vii k z,3

(2.2.6)

We expect that the vortex stretching tends to align vortex lines with the strain rate

so that the anisotropy bi_ would be proportional to the strain rate sij, i. e.,

be. 8ij,3 o¢ --, where s = (2sijsij) 1/_, sis = (ui5 + uj,i)/2
8

(2.2.7)

This leads to the following model:

(2.2.s)

where we have assumed that w_ and (2sijsis) 1/2 are well correlated.

Using the relation, wi = eijkuk,j, it is not difficult to show that at large turbulent

Reynolds number,

OdiOdi "_ 2-£(j Sij (2.2.9)

and Eq.(2.2.8) can be also written as

wiwju ,s = wi (2.2.10)

Equation (2.2.10) indicates that this term is of the order (u3/13)R3t/2 as it should

be. On the other hand, from eq.(2.2.4) the term wlwSui,s - uwidwi,j must be of the

order (ua/13)Rt which is the order of magnitude of all the other terms in Eq.(2.2.4),

therefore the term -uwi,jwi 5 must cancel the term (2.2.10) or (2.2.8) such that the

difference of these two terms is smaller than the term (2.2.10) or (2.2.8) by an order



8 Tsan-Hsing Shih

of R_/2. This suggests that the combination wiwju_,j -vwi,jwi,j can be modeled by

the following two terms:
2

(2.2.11)

pl/2because the ratio of k/v to and the ratio of s to S are of order -_t , where

k _ u 2 is the turbulent kinetic energy and S is the mean strain rate (2SijSij) 1/2.

Equation (2.2.11) does give the right order of magnitude for w_wju_,j - vw_,jwi,j.

Therefore, the dynamical equation for fluctuating vorticity (2.2.4) at large Reynolds

number can be modeled as

2

= + -( OgiWi U w_wi+ (2.2.12)

Using c = vwiwi, we readily obtain the following model dissipation rate equation,

E2

_,t + Uje,j = -(_-_)j + C_1S s - C_2 k + _ (2.2.13)

where C,_I and C_2 are the model coefficients which are expected to be constant at

large Reynolds number.

It should be noticed that Eq.(2.2.13) is different from the standard s equation

(2.2.1) by both the generation and destruction terms. First, the Reynolds stresses

do not appear in the generation term and the new form of the generation term is

similar to that proposed by Lumley 7 which is based on the concept of spectral energy

transfer. Second, the destruction term is well behaved so that equation (2.2.13) will

not have a singularity anywhere in the flow field. We expect that equation (2.2.13)

will be numerically much more robust than equation (2.2.1).

Equation (2.2.13) can be applied to any level of turbulence modeling including

second order closure models; however the turbulent transport term (_'U-_),i needs

to be modeled differently at different levels of turbulence modeling. In an eddy

viscosity model, the term (_--U-T),iwill be modeled as

t/T

(_-_7),_ = -(_-s,i),i (2.2.14)

The coefficients C_1, C_2, a_ and the eddy viscosity _'T must be calibrated using

experimental data (Shih et al. 9)

Scalar dissipation ¢e

A similar analysis leads to the following model scalar dissipation rate equation:

se,t + UjEe,j = -(-uj¢_) 5 + CelS ¢e + Ce2Pr -1/2 _ - Ce3 _
k + _ (2.2.15)

where • = _ and T is the mean scalar quantity, such as, the mean tempera-

ture. Further development of heat transfer model is described in Section 3.4.

The Researchers involved with the subject in this section are T.-H. Shih, W. Liou,

A. Shabbir and Z. Yang.
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2.3 Eddy Viscosity Transport Equation

In eddy viscosity models, one accepts the following simple constitutive relation

2

uiuj -- --2_TSij + -_k_ij (2.3.1)

and assumes that the eddy viscosity is characterized by some kind of velocity and

length scales u _ and g:

uT _ u' g (2.3.2)

In two-equation k-c eddy viscosity models, for example, one specifies that

k_
u' _ k½, l _ -- (2.3.3)

and, hence, the eddy viscosity is assumed as

ur = C, _ (2.3.4)

The eddy viscosity assumption (2.3.4) is commonly adopted in two-equation models.

Eqs.(2.3.1) and (2.3.4) together with appropriate k and _ equations have been widely

used in engineering calculations. However, for cases where the mean flow changes

quickly or has a strong mean stream-line curvature or rotation, etc., this kind of

model does not work very well, since the assumption (2.3.4) is too simple to account

for the effect of the above mean flow structure on eddy viscosity.

The main purpose of this study is to drop the assumption (2.3.4) and to derive

an exact equation for YT based on Eq.(2.3.1) and other exact turbulence equations

(i.e. first principles). In this way, we hope that some important turbulent physics

can be brought into the eddy viscosity and that a physically sound turbulence eddy

viscosity can be calculated.

Using Eq.(2.3.1), we may write for incompressible flows

4 2 S 2
uiuj uiuj = 2v_S 2 + -_k , where =2S_jS_j

Differentiating both sides, we obtain

D Sij D __ //T _ $2 (2.3.6)
D---_UT -- $2 "_UiUj 2S 2

The equation for uiuj can be written as

D

-_t uiuj = Dij + P_j + II_j -eij + Co_j (2.3.7)

(2.3.5)
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where

= -u u; Uj,k -
1

Ilij -- --pP,iUj + p,jui

_ij = 2v_7,kuj,_

Coij ---- --2_imk_rnU-_j -- 2ejmk_m_"ffi

Inserting Eq.(2.3.7) into Eq.(2.3.6), we obtain an exact transport equation for eddy

viscosity

UT D $2 (2.3.8)D Sij (Dij + Pij + Ilij -eij + Coij) 2S 2 DtD--_VT -- 82

In this equation, all the important turbulence physics in the Reynolds stress equa-

tion, such as Reynolds stress diffusion term Dij, production term Pij, pressure-

velocity gradient correlation term H_j and dissipation tensor eij, are involved.

Comparing with the standard eddy viscosity assumption (2.3.4), this exact eddy

viscosity equation (2.3.8) contains very rich turbulence physics. This equation also

implies that a second order closure model will naturally lead to a corresponding

eddy viscosity model.

Now, as an example, we use Launder Reece and Rodi's 1° model and a gradient

transport model for the triple velocity correlation (-_-_juk -- ea:u-7-U_ _ to derive3,k]

a model equation for VT. The resulting equation is

(2.3.9)
I]T'kS?k (l] PT _2UTSijSij,kkD 3 lJ T ) S 2 -_- 2r-

e SikSkjSji YT D $2-F" k - C 1 _ b'T + 2(C2 - 2)VT $2 282 Dt

Note that the Coriolis terms do not explicitly appear in this equation; however

the rotation effect on UT could be carried over through the mean flow field. In

addition, we also note that there are no extra model coefficients introduced in

Eq.(2.3.9). All model coefficients (a, CI and 6'2) are brought in from the second

order closure model. The values of these model coefficients may need adjustment in

model applications. Note that Eq.(2.3.9) is not a self-consistent equation since the

turbulent kinetic energy k and its dissipation rate _ are also involved. Eq.(2.3.9)

together with k-_ transport equations will provide a new three-equation model which

may better represent the effect of mean flow structure as well as mean flow history

on the eddy viscosity.

The Researchers involved with the subject in this section are T.-H. Shih, Z Yang,
and W. Liou.

3. One-Point Closure Schemes

In this section, we describe the developments on each of the moment closure

scheme and the pdf method which are of concern at CMOTT. The first two sections
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3.1 and 3.2 describe the one- and two-equation isotropic eddy viscosity models. Sec-

tions 3.3 and 3.4 describe the new developments on Reynolds stress and scalar flux

algebraic equation models. Section 3.5 assesses Reynolds stress transport equation

models. Section 3.6 describes a multiple-scale model for non-equilibrium turbulence.

Section 3.7 is about transition models. Finally, in Section 3.8 the pdf method for

turbulent chemical reaction is described.

3.1 One-equation eddy viscosity model

Recently developed one-equation eddy viscosity models are either based on the

assumption (Baldwin and Barth n):

k 2

= c. T (3.1.1)

or created according to computational experience (Spalart and Allmaras n). Both of

them are successful in some flow calculations. This scheme is quite attractive in CFD

because one only needs to solve one scalar I/T equation without bothering about

other turbulence quantities. However, comparing with k-e two equation models, the

above mentioned one-equation VT models do not contain any more turbulent physics.

In fact, Baldwin and Barth's model is, basically, a change of dependent variable

based on Eq.(3.1.1) plus some extra approximations. Therefore, in principle, we

should not expect any superior performance over two-equation models. HoweVer, if

we do not use the assumption (3.1.1), there is the possibility to improve and extend

the capability of one-equation eddy viscosity models.

The objective of this study at CMOTT is to derive a physically sound eddy

viscosity equation which contains rich turbulent physics and accounts for various

effects from mean flow structures.

Note that in Section 2.3 we have already derived an exact equation for the eddy

viscosity (2.3.8) and also a model equation (2.3.9) which is based on the Reynolds

stress transport equation model of Launder, Reece and Rodi (LRR). All turbulent

physics contained in the Reynolds stress equation can be brought into the eddy

viscosity equation. Therefore, in principle, the transport equation (2.3.9) should be

better than existing one-equation models based on Eq.(3.1.1). However, Eq.(2.3.9)

is not self-consistent because k and s are also involved. To make Eq.(2.3.9) self-

consistent, we must model k and k/e in terms of 1]T and S. In most shear flows,

the energy-containing eddy turn-over time k/s is of the same order as the mean

flow time scale S -1, so that _/k cx S is a reasonable model. In addition, a crude

dimensional analysis gives k (x vTS and this is, of course, reasonable only for shear

flows. After the above considerations, the resulting self-consistent one-equation

model is:

D
D---_,T = [(v + _'T)(vT)'k]'ka -- CJ---9-O(_'T)'k(VT)'kO" + CvlS VT

+ 2(Cv2 - 2)VT SikSkjSyl UT D $2
S2 2S 2 Dt

(3.1.2)
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where the diffusion terms from the Reynolds stress equation (2.3.7) have been ma-

nipulated and approximated. Eq.(3.1.2) clearly exhibits the various effects of the

mean flow on the eddy viscosity.

The model coefficients Cv1, C_,2 and a can be determined by using the experi-

mental data of homogeneous shear flows, free shear flows and boundary layer flows

as well as the relations in the inertial sublayer. Extensive tests of this model in

various flows are carrying out at the CMOTT.

The Researchers involved with the subject in this section are T.-H. Shih, W. Liou,

Z. Yang and J. Zhu.

3.2 Galilean and tensorial invariant realizable k-e model

The two-equation k-e eddy viscosity model is one of the most widely used tur-

bulence models in engineering calculations. The k-_ model has versions for high

Reynolds numbers and for low Reynolds numbers. For wall bounded turbulent

flows, the high Reynolds number k-_ model (for example, Launder and Spalding 13)

must be applied together with a wall function as its boundary condition, while the

low Reynolds number k-_ model (for example, Jones and Launder 14) can be inte-

grated to the wall. The high Reynolds number k-c model of Launder and Spalding

is considered as a standard k-E model. We notice that even though the model dissi-

pation rate equation is created by assuming an analogy with the turbulent kinetic

energy, there was not much modification until Lumley 7 and Shih et al. 9 For near

wall turbulence, in addition to Jones and Launder's model, there are many other

versions of low Reynolds number k-E models (such as Chien 15, Shih and Lumley 16,

Yang and Shih 17) which have made better performance over Jones and Launder's

model.

There are, probably, four or five issues worth mentioning about existing low

Reynolds number k-E models: the model constants are not consistent with those

in the high Reynolds number k-e model; the wall correction terms and damping

functions are related to the wall distance so that models are not tensorial invariant;

a nonrealistic dissipation rate near the wall is introduced; they are not always

realizable since normal stress could become negative; and finally, they do not work

very well for boundary layer flows with various pressure gradients.

The objective of this study at CMOTT is to overcome the above mentioned

problems. First, we propose a vorticity dynamics based dissipation rate equation

as a part of high Reynolds number k-e base model. 9 Second, based on the invariant

theory, inhomogeneous terms for the dissipation rate equation are proposed which

enable the model to better respond to the change of pressure gradients (Yang and

ShihlS). Third, the wall distance parameter is removed from the damping function

so that the model is tensorially invariant (Yang and Shih19). The model constants

are consistent with those in the high Reynolds number k-e model. Finally, the

non-negativity of normal Reynolds stresses, the realizability condition, is imposed.

The Researchers involved with the subject in this section are Z. Yang, T.-H. Shih

and C. Steffen.
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3.3 Reynolds stress algebraic equation model

All eddy viscosity models including one- and two-equation models are isotropic.

For the flows where anisotropy is important, for example, the secondary flows driven

by turbulent normal stresses in a square duct or curved duct, eddy viscosity mod-

els do not produce correct flow structures. To overcome this intrinsic deficiency of

isotropic eddy viscosity models, one proposes a Reynolds stress algebraic equation

model which will provide an effective anisotropic eddy viscosity. The first such a

model was proposed by Rodi 2° and it achieved some success in the prediction of

anisotropic related flow structure. However, Rodi's formulation is a set of algebraic

non-linear system equations for Reynolds stresses and it often creates numerical dif-

ficulty in obtaining a converged solution. Recently, Taulbee _1 obtained an explicit

algebraic expression for the Reynolds stress using Pope's 22 tensor expansion formu-

lation and solved this numerical difficulty. However, in general, Rodi's formulation

assumes that the ratio u_uj/k is constant and, of course, this is not really true for

most turbulent flows of interest. Therefore, sometimes, this Reynolds stress alge-

braic equation model produces even worse results than the isotropic eddy viscosity

models for cases where eddy viscosity models are appropriate.

Alternative ways for obtaining effective anisotropic eddy viscosity models have

been tried by a few researchers, for example, the DIA method by Yoshizawa 3,

the RNG method by Rubinstein and Barton 4 and invariant theory by Shih and

Lumiey. 1. It is interesting to point out that the RNG and DIA methods result in

the same formulation and that this formulation is the first five terms of a general

constitutive relation Eq.(2.1.3) except that the model coefficients are different.

One of our goals at CMOTT is to search for an effective anisotropic eddy vis-

cosity model for complex turbulent flows where the nonequilibrium of turbulence

is not very severe so that the constitutive relation (2.1.3) is more or less valid. We

have explored the potential capability of Eq.(2.1.3) and found that a truncation of

Eq.(2.1.3) up to the quadratic terms of the mean velocity gradients is sufficient for
various flows of interest. The model coefficients are determined such that realizabil-

ity for the normal stresses is ensured. The detailed analysis is described by Shih et

al. 23

The quadratic version of Eq.(2.1.3) together with the standard k-s transport

equations, successfully predicts many complex flows as well as simple flows which

include backward-facing step flows; confined coflowing jets; confined swirling coaxial

jets; flows in 180 ° curved duct; flows in a diffuser and a nozzle; boundary layer

flows with pressure gradient and turbulent free shear flows. See references 23-25 for

detailed results.

The Researchers involved with the subject in this section are J. Zhu and T.-H.

Shih.

3.4 Scalar flux algebraic equat!0 n model

In parallel with Reynolds stress algebraic equation model, we have also tried to

develop an effective anisotropic scalar eddy diffusivity model for scalar (heat) fluxes

based on the new constitutive relation (2.1.7) and the new thermal dissipation rate
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equation (2.2.16). We have determined that it seems sufficient to truncate Eq.(2.1.7)

up to linear terms of the mean velocity gradient, i.e.,

o ,=alk( ,,,+ -7( (3.4.1)

This equation indicates that the heat flux and the mean temperature gradient are

not necessarily in alignment due to the distort!on of the flow field. This means that

the effective scalar eddy diffusivity is anisotropic.

Eq.(3.4.1) together with the 82 and Ee equations will be a closed set of model

equations for turbulent heat fluxes. The model coefficients are calibrated from

homogeneous flows. Detailed analysis and a few model tests are described in this

research briefs by A. Shabbir.

The Researchers involved with the subject in this section are A. Shabbir and
T.-H. Shih.

3.5 Reynolds stress transport equation model

The Reynolds stress transport equation model is considered as a next generation

of advanced turbulence modeling for engineering applications. In principle, the

second moment equations describe various effects of the mean flow and external

agencies on the evolution of turbulence, hence, are the most attractive way (also

the simplest correct way) to study turbulent flows.

Various closure models for second moment equations have been developed. The

success of these closures are marginal and vary with each flow. To identify the

sources of their deficiencies, one often uses simple flows where the specific model

term in the second moment equations can be isolated, hence, the corresponding

model can be checked against experimental data or direct numerical simulation

(DNS). For example, using pre-distorted anisotropic homogeneous relaxation flows,

we may check the return-to-isotropy models with experimental data or DNS. How-

ever, for other flows, several model terms, such as, triple velocity correlations, rapid

and slow pressure-strain correlations, etc., simultaneously exist and can not be iso-

lated in the experiments. In these cases (for example, in a homogeneous shear flow

or a channel flow) only DNS can provide all the information for simultaneously

checking various models.

We have examined various existing closure models using experimental data as

well as DNS data (Shih et al. 26 and Shih and Lumley27). Conclusive statements are

difficult to draw at this time. However, the following remarks can be made about

various closures for the second moment equations, i.e., the triple velocity correlation

Tijk, the rapid and slow pressure related correlations HiTp, Hi_, and the dissipation

rate tensor gij:

a) T_j_. All the existing models, such as Daly and Harlow _s, LRR 1°, Lumley 29,

etc., are not very satisfactory for highly inhomogeneous flows, such as flow near the

wall. However, for flows where the inhomogeneity is not very high, the above closure

models become close to each other and also closer to the DNS data. In addition,

the triple velocity correlations in these situations are usually small comparing with
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other terms in the equation, so that modeling of this term is not as critical as other

terms for the results of turbulent flow calculations, except for the flow near the wall.
rp

b) Hij. It is very clear from all the available DNS data that nonlinear models, such

as, Shih and Lumley 3° are much better than linear models, such as SSG 31. It seems

also that the following constitutive relation

=

is quite appropriate, i.e., its dependence on turbulent Reynolds number and other

parameters is quite weak and can be neglected. However, one deficiency of this form

observed by Reynolds _2 is that it can not take the rotation effect into account.

c) H_. This term is usually modeled together with the dissipation tensor sij and
the combination of the two is called the return-to-isotropy term. All existing mod-

els are unsatisfactory at the present time. They are far from "universal", i.e., their

performance varies from flow to flow. It is noticed that some strange behavior of

return-to-isotropy (for example, for some pre-distorted flow relaxation, turbulence

evolves toward anisotropy before it returns to isotropy) occurs and cannot be pos-

sibly modeled with the following constitutive relation:

In addition, the behavior of return-to-isotropy was found to depend not only on the

Reynolds stresses at the present time but also on their history according to DNS

data (Lee33). It may be also necessary to include triple velocity correlations into

the above constitutive relations from the definition of H_. The term H_ seems

highly dependent on the turbulent Reynolds number and slowly approaches to its

asymptote as Reynolds number goes to infinity, so that, in general, one should not

exclude its dependence on turbulent Reynolds number even for moderate Reynolds

numbers. In addition, H_ is also noticeably affected by the mean strain rate ac-

cording to the DNS data 34, so that, in general, the mean strain rate should be also

considered in the constitutive relation. In short, much more research is needed for

developing a better model of II_.

The Researchers involved with the subject in this section are T.-H. Shih and A.

Shabbir.

3.6 Non-equilibrium multiple-scale model

To consider the effect of the nonequilibrium of energy spectrum on turbulent

quantities, such as k, E and u_uj, etc., Hanjelic et al. 35 are the first to propose a

partition in the turbulent energy spectrum. Because of the nonequilibrium, the rate

that energy enters the low wave number region, ep, does not equal to the energy

transfer rate from low wave numbers to high wave numbers, st. Therefore it is

reasonable to describe the evolution of the energy contained in low wave number

region, kp, and high wave number region kt, separately. As a result, the time scale

or the length scale defined by different energy transfer rates will be different and

this multiple-scale concept reflects the nonequilibrium effect of turbulence.
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We think that this concept would be more appropriate for compressible flows

because the compressibility often creates nonequilibrium interactions between large

and small eddies. We first modify Hanjelic et aI.'s model, test it in various free

shear flows and boundary layer flows and then extend it to compressible flows by

consideration of the effects of compressibility on the equations for kp and _p. The

proposed model is tested in both compressible free shear flows and boundary layer

flows. For detailed analysis and flow calculations see the report by Duncan et al. 36

and Liou and Shih 3v.

The Researchers involved with the subject in this section are W. Liou, T.-H. Shih
and B. Duncan.

3.7 Bypass transition model

The onset of turbulence transition in the propulsion system is often highly influ-

enced by the free stream turbulence. This transition process does not go through

the linear instability but is mainly controlled by nonlinear processes. Therefore, it

is sometimes called "bypass" transition. Because of this highly nonlinear process of

transition, turbulence models may be used to predict it. In fact, many two-equation

models, for example, k-_ eddy viscosity models of Launder and Sharma 3s, Chien 15,

etc., do mimic bypass transition on a flat plate when the free stream has a certain

amount of turbulent intensity. However, to obtain an accurate prediction of bypass

transition, the study of the bypass transition process and physics is needed. The

conventional turbulence models must be modified to take into account the intermit-

tent phenomena of transitional flows.

We have proposed transition models based on a two-equation turbulence model

using an intermittency factor to modify either the eddy viscosity or modeled k-e

equations. Successful results for a flat plate boundary layer under various free-

stream turbulence intensities are obtained. For details see the report by Yang and
Shih 39.

The Researchers involved with the subject in this section are Z. Yang and T.-H.
Shih.

3.8 Joint scalar PDF model

One of the critical problems in turbulent combustion is how to treat the inter-
action between the chemical reaction on the turbulence. The estimation of the

production rate of compositions based on the mean flow temperature would be in a

very large error for flows with finite rate chemical reactions. The reason is that the

production rate of compositions depends not only on the mean values of tempera-

ture T and compositions Ci, but also very much depends on the detailed fluctuations

of temperature 0 and compositions c_. The moment closure scheme of modeling the

production rate of compositions in terms of the mean flow temperature, the mean

compositions and various correlations consisting of the fluctuating temperature and

composition, such as _, _cl, clcj, ..., has not been successful. However, the PDF

method allows us to treat chemical reaction exactly without modeling (Pope4°).

Therefore, for the study of turbulent combustion problems, we use the joint scalar

PDF transport equation for the scalar field and the moment closure schemes for
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the velocity field and develop a hybrid solver consisting of a Monte Carlo scheme

and a conventional CFD method. For detailed description of this procedure and its

applications see Hsu 41 and Hsu et al. 42

The Researchers involved with the subject in this section are A. Hsu, A.T. Norris

and J.Y. Chent

4. RING and DIA

In developing one point turbulence models, conventional modeling methods can

be supplemented by "non-conventional" methods such as renormalization group

theory (RNG) and the direct interaction approximation (DIA). These are two point
theories formulated in wavevector or fourier space; one point models are derived

by integration over wavevectors. This approach provides theoretical support for

conventionally derived models and sometimes suggests theoretically derived forms

for the empirical elements, whether constants or functions, which appear in these

models.

We have applied RNG methods to both the eddy viscosity and Reynolds stress

transport equation models. In addition to the k - e model proposed by Yakhot

and Orszag 43, it is possible to obtain constitutive relations for Reynolds stress

and heat fluxes (Rubinstein and Barton 4,a which are special cases of the general

results Eqs.(2.1.3) and (2.1.7). By applying the perturbation theories of Yakhot

and Orszag 43 to the relevant correlations, expansions in powers of the mean velocity

gradient are obtained for the stresses and heat fluxes; quadratic truncation of the

series leads to a stress model Eq.(2.1.3) with constant a4,a6,a_ and a heat flux

model Eq.(2.1.7) with constant a2, a3 in which the constants are in good agreement

with empirically selected values. The forms derived are also consistent with the

DIA analysis of Yoshizawa a'5.

The RNG method also provides a formulation for closing the Reynolds stress

transport equation (Rubinstein and Barton44). Perturbative evaluation of the cor-

relations Hi_ and H_ leads to series expansions in powers of the mean velocity

gradient. These series can be consolidated, or "resumed" using the known pertur-

bation series for the Reynolds stresses by methods analogous to Paxie approximation.

Systematic lowest order summation leads to a Reynolds stress transport equation

with a form identical to the LRR model equation and with constants in reason-

able agreement with empirically chosen values. Higher order resummation leading

to nonlinear models of the type described in Sec. 3.5 remains an open possibility.

The possibility of such resummation in the context of DIA has been discussed by

Yoshizawa4_,46

Recent work has focussed on nonequilibrium time dependent relations between the

Reynolds stress and the mean flow derived from a simplification of the DIA theory

of shear turbulence. In this theory, shear turbulence is modeled by a non-Markovian

eddy damping acting against the mean shear. The RNG and DIA Reynolds stress

transport models and the LRR model all assume Markovian damping; as in the

_" Professor, University of California, Berkeley, CA
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molecular theory of transport coefficients, Markovian damping describes long time

behavior and is incorrect at short times. The most important consequence of non-

Markovian damping is a strong suppression of eddy damping at short times. This

leads to closer agreement between the present theory and rapid distortion theory

at short time. this is important in modeling oscillating shear flows: recent work of

Mankbadi 47 shows that RDT based models best predict such flows. In transient

homogeneous shear flow at high strain rates, the LRR model predicts rapid onset

of eddy damping leading to excessive growth of turbulence kinetic energy at short

times. The suppression of eddy damping at short times in the present model should

lead to improved predictions for this flow as well.

Another consequence of this theory is a stress model Eq.(2.1.3) in which the coef-

ficients a2,.., are functions of the mean strain rate. This theory can be described as

RDT with a modified total strain determined by the response function of the DIA

theory of isotropic turbulence. The introduction of a phenomenological modified to-

tal strain has often been advocated in the RDT literature to improve the agreement

between RDT and shear flow data; here the modified total strain is deduced as a

consequence of the theory. In the special but important case of simple shear flow

in which OUJOxj = $5_15j2, the result can be formulated in terms of Eq.(2.1.3) in

which, for example, a2 = as (Sk/e) and the function a3 is found exactly from RDT.

There are analogous results for the coefficients a4, a6, a7; in simple shear flow, the

remaining terms in Eq.(2.1.3) identically vanish. Extension of this theory to other

mean shear tensors depends on the tabulation of the corresponding RDT solution.

The researchers involved with the subject in this section are R. Rubinstein and

A. Yoshizawa.t

5. Numerical Simulation

To obtain a better understanding of the effect of compressibility and rotation

on turbulence, numerical simulations of compressible homogeneous shear flows and

rotational flows are carried out. The effects of compressibility and rotation on the

energy spectrum and energy cascade between turbulent eddies has been analyzed

(Hsu and Shih4S). These simulations support the idea of the multiple-scale model

for nonequilibrium compressible turbulent flows (W. Liou and Shih37).

Another numerical simulation is the transition subjected to the free stream large

disturbances. The objective of this simulation is to obtain some insight into the

transition physics and to provide data base for bypass transition modeling. Based

on the assumption that the transition process is mainly controlled by large scale

motions, we use a high accuracy finite difference Navior-Stokes solver with course

grids to simulate ther!arg_e scale motions of transition. A preliminary calculation of

bypass transition was carried out. Various statistics of the calculated flow field are

under examination.

The Researchers involved with the subject in this section are A. Hsu, C. Liou:_,

Z. Yang, A. Shabbir, T.-H. Shih.

Professor, Tokyo University, Japan

Professor, University of Colorado, Denver, CO
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